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Abstract

The JUNG (Java Universal Network/Graph) Framework is a free, open-source software
library that provides a common and extendible language for the manipulation, analysis,
and visualization of data that can be represented as a graph or network. It is written in
the Java programming language, allowing JUNG-based applications to make use of the
extensive built-in capabilities of the Java Application Programming Interface (API), as
well as those of other existing third-party Java libraries. We describe the design, and
some details of the implementation, of the JUNG architecture, and provide illustrative
examples of its use.
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1. Introduction

A network data set typically consists of a set of entities and known relationships among these
entities. For example, a social network data set could consist of a list of individuals and a list
of pairwise binary relations indicating those pairs of individuals that are known to be friends.
It is often convenient to formally represent such data as a graph, with vertices representing
entities and edges representing their relationships. Examples of networks of broad interest
include bibliographic citation networks (papers citing other papers), biological networks (e.g.,
proteins and their interactions), telecommunication networks, and the Web.

Network data sets can also include additional information about both the entities and the rela-
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tionships. A co-authorship network, for example, could be defined on authors and co-author
relationships. Additional information about each author could include the author’s name,
institutional affiliations, and areas of interest. Similarly, the documents underlying the co-
author relationships have keywords, text content, and citations to other papers. Furthermore,
authors in such a network may also be related in other ways (advisory relationships, member-
ships on conference committees, friendships, etc.). These kinds of multilayered relationships
are not necessarily amenable to the same kinds of well-known data analytic techniques that
apply to “flat” or non-relational data.

The study of such network data sets is becoming increasingly common across a variety of
disciplines, including statistics, social science, computer science and engineering, physics, and
biology. In turn this has led to a diverse set of data analysis techniques being developed.
Among these techniques are methods for graph visualization and drawing (Battista, Eades,
Tamassia, and Tollis (1999)), physically-motivated models for characterizing large-scale prop-
erties of networks (Watts and Strogatz (1998), Barabasi and Albert (1999), Newman (2000)),
Markov and eigenvector models for Web page modeling (Brin and Page (1998), Kleinberg
(1999)), and quantitative methodologies for analyzing social networks (Wasserman and Faust
(1994)) including relatively sophisticated statistical models (Hoff, Raftery, and Handcock
(2002), Butts (2003), Huisman and Snijders (2003)).

Across all of these techniques many of the same basic operations are routinely performed, such
as aggregating over vertices and edges to compute summary statistics or computing shortest
paths between vertices. Performing these tasks can be significantly more complicated than
traditional analysis tasks for“flat file”multivariate data. This is particularly true for the types
of large sparse networks that are common in many applications, with large numbers of vertices
but relatively few edges per vertex on average. Data structures that are specifically designed
for sparse graphs can be significantly more computationally efficient and more flexible to work
with compared to using “non-sparse” multivariate alternatives.

The challenges of working with network data motivate the creation and development of flex-
ible software environments that are designed specifically for such data. In this paper we
describe the JUNG Framework, an open-source Java-based software library that has been
developed specifically as a common and extendible language for the manipulation, analysis,
and visualization of data that can be represented as a graph or network.

The major features of JUNG include the following:

• Support for a variety of representations of entities and their relations, including directed
and undirected graphs, multi-modal graphs (graphs which contain more than one type of
vertex or edge), graphs with parallel edges (also known as multigraphs), and hypergraphs
(which contain hyperedges, each of which may connect any number of vertices).

• Mechanisms for annotating graphs, entities, and relations with metadata. These capa-
bilities facilitate the creation of analytic tools for complex data sets that can examine the
relations between entities, as well as the metadata attached to each entity and relation.

• Implementations of a number of algorithms from graph theory, exploratory data analy-
sis, social network analysis, and machine learning. These include routines for clustering,
decomposition, optimization, random graph generation, statistical analysis, and calcu-
lation of network distances, flows, and ranking measures (centrality, PageRank, HITS,
etc.)
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• A visualization framework that makes it easy to construct tools for the interactive
exploration of network data. Users can choose among the provided layout and rendering
algorithms, or use the framework to create their own custom algorithms.

• Filtering mechanisms which extract subsets of a network; this allows users to focus their
attention, or their algorithms, on specific portions of a network.

These capabilities make JUNG a good platform for exploratory data analysis on relational
data sets.
JUNG is a framework on which applications and tools for manipulating graph and network
data can be built. It can be used in simple snippets of code to test ideas, or to aid in the
development of a sophisticated tool with a graphic user interface. JUNG is not itself a stand-
alone tool, but rather a library that can be used to support the construction of specific tools.
Building a tool that uses JUNG requires some knowledge of Java programming. The JUNG
distribution does include samples of small applications that use JUNG to accomplish certain
tasks, but they are intended to be examples of how one might use JUNG, not tools in their
own right.
As a library, JUNG can be used both to build network-oriented tools, and to provide network
capabilities to existing systems. For example, JUNG has been used to build Netsight, which
is a stand-alone application that will be discussed in Section 11, and has also been used to
add network visualizations to the code-analysis tool Augur (Froehlich and Dourish (2004)).
One advantage of using a toolkit, rather than an existing tool, for network analysis is that it
can be scripted in a very general way. This flexibility has made it possible for JUNG to be
used as part of a web-client applet that dynamically reads in and visualizes networks from a
database (Fisher and Dourish (2004)), to repeat a set of operations on several thousand net-
works (Smith and Fisher (2005)), and to be addressed by scripts in the network visualization
tool GUESS (Adar and Feinberg (2005)).
JUNG is freely provided under the BSD open-source license, which allows anyone to create
derived works from JUNG, as long as they acknowledge JUNG’s contribution to their work.
The open-source nature of the project makes it easier for users to write their own code, and
to understand how JUNG itself works; as a result, members of JUNG’s user community have
been able to contribute a number of extensions, algorithms and fixes.
We will use a data set derived from the CiteSeer digital library (Lawrence, Giles, and Bollacker
(1999)) as a motivating example throughout this paper. CiteSeer is a repository of more than
500,000 papers, written by approximately 100,000 different authors, primarily from computer
science. Each of these papers has been parsed to recover the text of the paper, information
about its authors (such as names and institutional affiliations), and its references to other
papers. This data can be interpreted to produce several different kinds of networks: a bipartite
network of papers and authors, a citation network of papers, a co-authorship network of
authors, a co-citation network of papers or of authors, and so on. Networks of this size and
complexity present several challenges to the data analyst.
The remainder of this paper is organized in the following sections.
In Section 2, we briefly review some of the concepts and terminology of graph theory and
object-oriented programming.
Sections 3 and 4 provide background on the basic principles of JUNG’s design and operation.
In Section 3, we discuss some of the reasoning behind the design of the JUNG architecture; in
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Section 4, we describe the fundamental properties and operations of JUNG’s graph, vertex,
and edge objects.

Sections 5, 6, 7, and 8 describe some of JUNG’s capabilities for representing and processing
data. Section 5 outlines methods for associating metadata with each JUNG element; Section
6, describes JUNG’s filtering mechanisms, which create subsets of existing networks; Section
7 outlines JUNG’s support for handling separate computational processes that all refer to
the same (dynamically changing) network; and Section 8 lists some of JUNG’s algorithms for
network analysis.

Sections 9 and 10 describe JUNG’s input and output systems. Section 9 outlines JUNG’s
architecture for creating network visualizations, and Section 10 briefly describes the ways in
which graphs may be created from and saved as persistent data storage.

Sections 11 and 12 discuss applications of JUNG. Section 11 presents case studies of how
JUNG has been used, and Section 12 compares JUNG to other tools and libraries for network
analysis and visualization.

Finally, in Section 13, we mention some plans for JUNG’s future development.

2. Terminology and Notation

This section briefly defines some of the terms that are used in this paper, for those who may
not be familiar with graph theory or with object-oriented programming in Java.

2.1. Graph Theory

Graphs (also known as networks) consist of a set of vertices, V , and a set of edges, E; the
number of vertices is denoted by |V | and the number of edges by |E|. Vertices (also known as
nodes) represent entities, and edges (also known as arcs, links, or ties), which connect vertices,
represent relationships or events which involve the entities that the vertices represent. The
number of edges incident to a vertex is called the degree of that vertex. Graphs in which each
edge has an associated numeric value (such as the number of co-authored papers) are called
weighted or valued graphs. One common graph subtype is a k-partite graph (called a bipartite
graph when k = 2), in which the vertices are partitioned into k disjoint subsets, and each edge
connects vertices in distinct partitions.

Most graphs contain edges that each connect exactly two vertices; unless otherwise specified,
all graphs in this paper have this property. (Graphs in which edges can connect any number
of vertices are called hypergraphs, and their edges are called hyperedges.) An edge which has
a defined source and destination (such as one representing “A has cited B”) are called directed
edges; an edge which does not (such as one representing “A and B have co-authored a paper”
are called undirected edges. Graphs which contain both directed and undirected edges are
called mixed-type graphs. Two edges are said to be parallel if they connect the same set of
vertices and have the same direction/ordering.

A graph is said to be connected if each vertex is reachable from each other vertex; many algo-
rithms (such as centrality algorithms) are only well-defined on connected graphs. We define
the distance between two vertices to be the length of the shortest path (on the underlying un-
weighted graph) that connects them; in other contexts, the distance may refer to the shortest
weighted path.
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A network may contain entities of different types, or with different roles; it may also include
different types of relationships or events. These roles and interaction types are collectively
referred to as modes. A network which has one type of entity and one type of relationship is
called a single-modal network; if the network has more than one type of entity, relationship,
or both, it is called a multi-modal network.

2.2. Object-Oriented Programming and Java

Java is an object-oriented programming language. This generally means that programming
involves (a) defining object types and their capabilities, and (b) constructing objects and
using their capabilities in aid of the desired tasks.
Object types are defined by interfaces and classes (which may implement one or more inter-
faces, and may extend (inherit behavior from, or be a subclass of) a single other class). A
particular object is said to be an instance of the types that it implements and extends. Java
defines a class called Object which is a superclass of all Java classes (including, implicitly,
any user-defined class). The specific behaviors and capabilities of a class are defined by the
implementation of that class’s methods; the types and ordering of a method’s arguments de-
fine that method’s signature. Classes may be declared to be abstract, in which case they need
not supply implementations of each method that they declare, and an instance of the class
cannot be created; this can be useful for providing implementations that are general enough
to apply to most anticipated extensions of such a class. Objects may contain references to
other objects.
API (Application Programming Interface) is a common term for a software library, especially
one whose design philosophy emphasizes backwards compatibility as the library evolves. Both
the standard Java libraries and JUNG are APIs.
There are a few different Java APIs that can be used to create graphic user interfaces; two
of the most popular are Swing (Sun Microsystems (2004)) and SWT (Eclipse Foundation
(2001)).

3. Design Principles

In this section, we discuss the key principles behind the design of JUNG.

3.1. Abstraction

JUNG makes use of Java interfaces, abstract classes, and implementation classes in its type
definitions. There are a few reasons that JUNG uses combinations of these layers of abstrac-
tion.
First, it separates the specifications from their implementations; this makes JUNG more useful
as a general language for handling graphs as data. Thus, for example, the ArchetypeGraph
interface specifies the capabilities of all graphs, but does not constrain how those capabilities
are provided.
Second, we combine this notion of abstraction with the object-oriented idea of inheritance.
For instance, we define Graph, the interface for all graphs whose edges connect exactly two
vertices, as a sub-interface of ArchetypeGraph, which means that it has all the properties of
ArchetypeGraph, but with a few additional properties that are specific to such graphs; this
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reflects the actual relationship between“archetype graphs”and graphs. Similarly, the abstract
class AbstractArchetypeGraph provides implementations of the methods of ArchetypeGraph
that aren’t specific to any particular variety of graph.

Third, it is advantageous to design method signatures, where possible, such that users cannot
supply arguments of the wrong type; this allows users to discover such errors when they
compile their code, rather than when they run it. At the same time, methods should generally
not be so constrained that they can only accept arguments which use a particular internal
implementation. We achieve both of these aims by specifying method signatures in terms
of interfaces (which only specify capability) rather than classes. Thus, for example, JUNG’s
methods generally operate on Graphs, rather than SparseGraphs; this allows users to use
these methods with their own Graph implementations, if they choose, as well as with any
implementations of Graph that JUNG may provide in future.

3.2. Performance

Traditionally, network and graph data sets have often been described mathematically as ma-
trices. Matrices are commonly implemented as two-dimensional arrays; this representation
facilitates fast retrieval of the edge(s), if any, that connect(s) two specified vertices (which
operation is called findEdge in JUNG). (For example, in the context of the CiteSeer co-
authorship network, one could use a.findEdge(b) to retrieve the edge which maintains a list
of the papers for which researchers a and b have appeared as co-authors.) However, this rep-
resentation is generally not feasible for large-scale networks. First, it requires O(|V |2) space.
Thus, a 2D array representation of the CiteSeer network, which has about 100,000 authors,
would require 10 billion entries to represent the possible connections; this far exceeds the
memory capacity of any currently available desktop computer. Second, existing algorithms
for network analysis which operate on matrices do not scale well to matrices of this size; many
matrix-based network analysis algorithms involve matrix multiplication, or matrix inversion,
which generally require O(|V |3) time on 2D arrays. In addition, this representation is prob-
lematic for dynamic networks (those whose vertex set may grow larger or smaller) and for
networks with parallel edges, and does not provide a natural way to represent metadata for
entities. Finally, large-scale networks are almost invariably very sparse, so almost all of the
space in a 2D array representing such a network is wasted on representing absent links.

A common alternative representation for sparse graphs and networks is the adjacency list
representation, in which each vertex maintains a list of incident edges (or adjacent vertices);
this requires O(|V | + |E|) space. In the case of the CiteSeer network, this represents a
savings in space of a factor of approximately 104. Unlike the 2D array representation, this
representation does not permit an efficient implementation of findEdge; nevertheless, JUNG
provides an implementation of this representation, for circumstances in which saving space is
paramount.

Most of the current JUNG vertex implementations employ a variant of the adjacency list
representation, which we term an adjacency map representation: each vertex maintains a
map from each adjacent vertex to the connecting edge (or connecting edge set, in the case
of graphs that permit parallel edges). (Separate maps are maintained, if appropriate, for
incoming directed edges, outgoing directed edges, and undirected edges.) This uses slightly
more memory than the adjacency list representation, but makes findEdge approximately
as fast as the corresponding operation on the 2D array representation. This representation
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makes JUNG’s data structures and algorithms, in general, well-suited for use on large sparse
networks (O’Madadhain, Smyth, and Adamic (2005), White and Smyth (2003)).

3.3. Predicates

A predicate is an expression (for example, “v.degree() > 3”) that, when evaluated on a
specified argument (in this case, v), returns either “true“ or “false”. Arguments for which a
predicate returns “true” are said to pass this predicate, and those for which the predicate
returns “false” are said to fail it. Some predicates, such as logical operators, act on other
predicates (such as an AND predicate, which its argument a passes if and only if a passes each
of its constituent predicates).

Graphs can impose constraints on the vertices or edges that may be added to them, such
as “only directed edges”, or “no parallel edges”. These constraints, as well as user-defined
criteria, can be expressed using predicates. For example, in a statistical analysis of the
CiteSeer co-authorship network, a user could use predicates to interactively define two sets of
edges (e.g., one consisting of papers published before the year 2000, and the other for papers
from 2000 onwards), and then test a hypothesis that the two edge sets came from different
edge distributions.

Predicates can also serve as flexible specifications for filters; for example, a renderer can be
told to only draw edges that pass a specified predicate, such as “weight(e) > x”, and then
vary the value of x according to the state of a visual interface component (such as a slider).
(For an example of a filtering interface, see Figure 9.)

These two ideas (constraining and filtering) are combined to form JUNG’s support for specific
constrained graph types. For example, JUNG provides support for k-partite graphs via the
KPartiteSparseGraph class. Instances of this class are created with a collection of vertex
predicates; JUNG then automatically creates an edge predicate that only passes edges which
connect vertices from distinct subsets. In addition, these vertex predicates are used as subset
specifications; JUNG provides utility methods that return all the vertices (or edges) that pass
a specified predicate.

3.4. Using JUNG With Other Libraries

Just as users can write Java programs that use JUNG to provide methods for manipulating
network data, JUNG uses other Java libraries (which are also platform-independent), to
perform certain functions and thus reduce the duplication of effort.

Commons Collections (Apache Jakarta Project (2004)) is a library that enhances the basic
Java API for collections of objects (for instance, by providing basic set-theoretic operations).
JUNG makes extensive use of this library; in particular, Commons Collections provides the
Predicate interface, which JUNG uses to implement support for predicates, subsets, and
constraints.

Colt (CERN (2004)) is a set of libraries for high-performance scientific and technical comput-
ing. JUNG provides methods to convert JUNG graphs to Colt matrices, and vice versa; this
allows users of JUNG to apply Colt’s extensive library of linear and matrix algebra routines
to JUNG graphs. JUNG also makes occasional use of some of Colt’s matrix algebra functions.

Xerces (Apache XML Project (2004)) is a library for parsing XML, which is used to im-
plement the GraphML (Brandes, Eiglsperger, Kaufmann, and Lerner (2004)) input/output
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capabilities. These capabilities are discussed in Section 10, Input and Output.
It is also possible to use JUNG in conjunction with code written in other languages: such
code can make use of JUNG, extend JUNG’s capabilities, or both. The Java Native Interface
(Sun Microsystems (2003)) allows Java code to access, and be accessed by, so-called “native”
code (that is, code which is written for a particular programming platform, such as Windows
or Linux). The SJava package (Lang (2004)) provides a more specialized way of calling R and
S code from Java and vice versa.

4. Graphs, Vertices, and Edges

4.1. Basic Properties and Operations

Graphs, vertices, and edges each have several properties that can be extracted, and operations
that they can perform (or have performed upon them). JUNG’s interfaces, outlined below,
define these properties and operations. Depending on the specific type of graph, vertex, or
edge, and on the implementation used, a given object may have other available properties
and/or operations. Each of these basic types includes operations for creating a copy of itself;
vertices and edges also include operations for identifying such a copy in a specified graph.
(Copying will be discussed in more detail in Section 4.4.)
By definition, JUNG vertices and edges can be elements of no more than one graph; this
allows users to ask, for example, for a vertex’s neighboring vertices without requiring them to
specify the graph as part of the query. This implies that each vertex and edge should be able
to identify the graph of which it is an element; this information can be of use, for example,
in writing a method for determining the length of the shortest path between two specified
vertices (where the graph itself is not explicitly specified).

Graphs

ArchetypeGraph defines a graph to be a container of vertices and edges, with several methods
for accessing and modifying these sets, for defining vertex and edge constraints, and for
specifying listeners. (Listeners are discussed in Section 7, Event Handling.)
The Hypergraph and Graph interfaces extend the ArchetypeGraph interface, and are spe-
cialized for hypergraphs and graphs whose edges connect exactly two vertices, respectively.
These interfaces specify method signatures for adding vertices and edges; these methods are
defined here rather than in ArchetypeGraph so as to allow for compile-time checks of vertex
and edge type (as discussed in Section 3.1, Abstraction). Graph in turn has subinterfaces
for graphs that have only directed edges, only undirected edges, or that are k-partite. The
Sparse graph types provide implementations of the Graph methods that are suitable to a
sparse graph. The graph type hierarchy is shown in Figure 1.

Vertices

The ArchetypeVertex interface defines a vertex as an entity, which resides in a specified
graph, with incident edge and neighboring vertex sets; it also defines various convenience and
utility methods (such as findEdge, which was discussed in Section 3.2).
The Vertex interface extends the ArchetypeVertex interface, and specifies additional method
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Figure 1: The type hierarchy for graphs

signatures for vertices of graphs whose edges connect exactly two vertices; these include
methods for accessing a vertex’s successors and predecessors, or its outgoing and incoming
edges. In such graphs, a vertex v that is connected to another vertex w via an undirected edge
e is both w’s successor and its predecessor (and vice versa), and e is considered to be both an
incoming and an outgoing edge of v and of w.

The Hypervertex interface also extends the ArchetypeVertex interface; it serves to identify
a vertex that may be added to a Hypergraph.

The AbstractSparseVertex abstract class implements some of the basic Vertex methods,
and is in turn extended by several different vertex classes, each of which is designed for a
different combination of graph properties (such as whether the graph accepts only directed
edges, only undirected edges, or both, and whether it accepts parallel edges). This multiplicity
of types permits more efficient Vertex implementations for more constrained graph types
(such as directed graphs which do not permit parallel edges). The vertex type hierarchy
is shown in Figure 2. In some cases, it can be useful to treat a directed graph g as an
undirected graph (for example, when deciding how to draw a picture of it). Since JUNG
considers successors and predecessors to be special cases of neighbors, and outgoing and
incoming edges to be special cases of incident edges, one can implicitly look at the underlying
undirected graph of g by accessing the neighbor and incident edge sets for each vertex.

Edges

The ArchetypeEdge interface defines an edge to be an entity, which resides in a specified
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Figure 2: The type hierarchy for vertices

graph, with an incident vertex set; it also defines various convenience and utility methods
(such as one which returns true if a specified vertex is incident to this edge).

The Edge interface extends the ArchetypeEdge interface for edges which connect exactly two
vertices; it is in turn extended by interfaces which define additional operations for directed
and undirected edges.

The Hyperedge interface also extends the ArchetypeEdge interface, and provides a method
signature for adding a vertex to an existing hyperedge.

The Sparse implementations of Edge correspond to the Sparse implementations of Vertex
and Graph. The edge type hierarchy is shown in Figure 3.

4.2. Creating, Adding, and Removing

Creating a graph may be done in three ways. First, one can call the constructor for the
desired type of graph, as in the following example:

DirectedGraph g = new DirectedSparseGraph();

Second, one can create a graph by reading it in from a file. Currently, JUNG can read and
write simple Pajek (Batagelj and Mrvar (2004)) and GraphML (Brandes et al. (2004)) files;
this is discussed in more detail in Section 10.

Third, one can generate a graph algorithmically, either with a user-defined method (e.g., one
that generates a graph based on a specified stochastic model), or with one of the classes that
JUNG provides for creating random graphs.

Once a graph has been created using any of these methods, vertices may be created and added
to this graph:

Vertex v1 = g.addVertex(new DirectedSparseVertex());
Vertex v2 = g.addVertex(new DirectedSparseVertex());

and once vertices exist, they may be connected by edges:
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Figure 3: The type hierarchy for edges

Edge e = new DirectedSparseEdge(v1, v2);
g.addEdge(e);

These operations may be used to update the CiteSeer co-authorship network as new authors
appear (new vertices), and new papers are written (new edges).

Note that creating vertices/edges and adding them to a graph are actually two different
operations, which can be combined into a single line of code (as in the vertex creation/addition
example above). The two-stage nature of this process makes it possible to create “orphaned”
vertices/edges that are not part of a graph. The behavior of the JUNG edge and vertex
methods is generally unspecified on orphaned vertices/edges.

This distinction (between creation and addition) is useful, however, because it allows us to
decorate vertices/edges (that is, attach data to them) before adding them to a graph:

Vertex v1 = new DirectedSparseVertex();
setProfession(v1, "Professor");
g.addVertex(v1);

In particular, if g contains a vertex constraint that requires that each vertex have a defined
“profession”, or if g is maintaining a list of predicate-specified subsets (one for each profession),
then the vertex must be so decorated before it is added to the graph.

Removing vertices and edges from a graph can be useful in several contexts, such as the iden-
tification of duplicate or otherwise invalid vertices/edges (the raw CiteSeer data set contains
a number of duplicate papers and authors); the creation of subgraphs; and the operation of
an algorithm that is testing the effects of (temporary) changes to the graph. This can be
done as follows:

g.removeEdge(e);
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g.removeVertex(v1);

Removing an edge from a graph will not affect any other part of the graph. Removing a
vertex from a graph may cause the edges that are incident to that vertex to be removed if
these edges would otherwise become ill-formed. (An ill-formed edge is one that is incident
to the wrong number of vertices. In graphs where edges are defined to connect exactly two
vertices, removing a vertex will result in the removal of all of its incident edges.)

Removing an element from a graph does not free the memory used by that object; in fact,
an element can be removed from a graph and then re-insert it in that graph or in a different
graph). As with all Java programs, the Java garbage collector is responsible for freeing the
memory for an object once it is no longer being used. Removing an element from a graph
also does not remove it from any JUNG-provided user data repositories (discussed in Section
5.2); users are responsible for updating the user data as necessary.

4.3. Constraints

The following constraints apply to all JUNG edges, vertices, and graphs:

• A vertex/edge may only be in one graph at a time.

• A vertex/edge may only be added to a given graph once.

• An edge may not be created incident to “orphaned” vertices.

• An edge may not be created which joins vertices in different graphs.

• The directionality of an edge must match that of the vertices that it is connecting, and
that of the graph to which it is being added. (Thus, for example, a DirectedSparseEdge
may not be added to an UndirectedGraph.)

As outlined in Section 3.3, Predicates, vertex and edge constraints are defined using the
Predicate interface, and may be accessed (and edited) via the getVertexConstraints and
getEdgeConstraints methods provided by ArchetypeGraph:

Collection edge_constraints = g.getEdgeConstraints();
// disallow parallel edges
edge_constraints.add(Graph.NOT_PARALLEL_EDGE);
// disallow self-loops (edges that connect a vertex to itself)
edge_constraints.add(new NotPredicate(SelfLoopPredicate.getInstance());

Constraints may be freely edited for empty graphs, but cannot be added to non-empty graphs
(this avoids consistency problems, since constraints are only checked when vertices and edges
are added to a graph).

Not all predicates are appropriate for use as constraints; for example,
ReciprocatedDirectedEdgePredicate only passes directed edges <u,v> for which there
also exists an antiparallel edge <v,u>; since edges are added to a graph one at a time, no
edge can pass this predicate when it is checked as a constraint. The documentation for the
predicates that JUNG provides generally specify whether they can be used as constraints.
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4.4. Copying and Equivalency

It can be useful to represent a single entity (or relationship) as two or more vertices (or
edges) in different networks. It is also sometimes desirable or useful to make a copy of a
graph, vertex, or edge; for example, this permits users to experiment with mutations of the
graph, to create subgraphs, or to observe in parallel different scenarios for the evolution of a
graph. For example, one could create a subgraph of the full CiteSeer co-authorship network
in which each vertex represents an author who has authored at least 50 papers, and then
analyze the connectivity of this “prolific author” subgraph. In such cases, it can be useful to
ask the question “what is the vertex v’ in graph g’ (the copied/derived graph) which is the
equivalent to vertex v in graph g (the original graph)?”

When a vertex, edge, or graph is copied, a new object of the same type is created, and the
contents of the object’s JUNG user data repository (about which more in Section 5.2) are
copied from the original object to the copy. If the object being copied is a graph, then all of
its vertices and edges are also copied into the new graph. If the object is a vertex or edge,
then the copied object is added to the specified target graph, and an equivalence relation
is created between the original vertex/edge (and, implicitly, any vertices/edges to which the
original vertex is equivalent) and the copy.

The following code creates a graph, creates two vertices and an edge and adds them to this
graph, then copies each vertex and edge from the original graph to a new target graph.

Graph original = new DirectedSparseGraph();
Vertex v1 = original.addVertex(new DirectedSparseVertex());
Vertex v2 = original.addVertex(new DirectedSparseVertex());
Edge e = original.addEdge(new DirectedSparseEdge(v1, v2));

Graph target = new DirectedSparseGraph();
Vertex v1_copy = (Vertex) v1.copy(target);
Vertex v2_copy = (Vertex) v2.copy(target);
Edge e_copy = (Edge) e.copy(target);

The vertices v1_copy and v2_copy are considered to be “equal to” the vertices v1 and v2,
respectively, and the edge e_copy is equal to the edge e. As a convenience, the Java built-in
Object.equals method has been defined in JUNG to respect this equivalence relation. Thus,
for example, the statements

v1 == v1_copy.getEqualVertex(original);
v1.equals(v1_copy);

each evaluate to true in the context of the code given above.

There are some restrictions that govern when and where vertices and edges may be copied:

• A vertex or edge cannot be copied into a graph if it already has an equivalent in that
graph. (This implies that the original graph and the target graph may not be the same.)

• The vertex/edge must pass any constraints that the target graph imposes on ver-
tices/edges.
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• The vertices incident to an edge must have equivalents in the target graph before the
edge can be copied into that graph. (Thus, in the example above, we could not have
copied the edge e until its incident vertices v1 and v2 had been copied.)

It can also be useful to be able to define a more general mapping between vertices (for example,
if two different data sets include some of the same entities). For this purpose, JUNG provides
the VertexMapper interface, which specifies a method that returns the vertex to which a
specified vertex is mapped; it also includes several implementations of this interface, which
use different mechanisms to establish the mapping (for example, string labels, vertex equality,
and a hash table).

5. User Data

Users can associate data with graphs, edges, or vertices in two ways: by extending the JUNG
classes, or by using the built-in JUNG user data repositories.

5.1. Class Extension

Users can extend the classes provided so that they include the variables/properties (and
methods for manipulating those fields) that the user desires. This mechanism is most appro-
priate for applications which are designed to operate on a specific data set, each of whose
elements have known properties. For instance, in the CiteSeer co-authorship network, each
vertex might store the associated author’s name, email address, and webpage (as shown in
the example below).

The ability to extend the JUNG classes is a feature of Java, and is not specific to JUNG.
The AbstractSparse classes use the built-in Java Object.clone method to copy instances
of Vertex, Edge, and Graph; as a result, copies of such objects will duplicate only the object
itself (the copied object thus has references to the same objects as the original).

This sample code creates a class for the representation of a CiteSeer author, by extending
SparseVertex with additional author-specific information.

public class Author extends SparseVertex
{

protected String name;
protected String email_address;
protected String webpage;

public Author( String name, String email_address, String webpage )
{

this.name = name;
this.email_address = email_address;
this.website = webpage;

}

public String getName() { return name; }
public String getEmailAddress() { return email_address; }
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public String getWebpage() { return webpage; }
}

5.2. User Data Repositories

JUNG provides a built-in mechanism, the UserData class, for annotating graph elements with
data. This mechanism is particularly useful for handling data which is either temporary or
idiosyncratic (i.e., data which not every graph element of that type will have or need). Exam-
ples of such data include a tag to indicate that a vertex has been selected in a visualization,
a value that represents the output of an algorithm (which may be discarded as soon as it is
no longer of interest), or a textual note that a data analyst attaches to a vertex of interest
(“this author (P Smith) may be the same as the author named P Smyth”).

Each JUNG object (graphs, vertices, and edges) has an associated user data repository;
objects are stored in this repository with a specified retrieval key for quick access. Users may
add, remove, modify, or fetch items from this repository; import data from another object’s
repository; list the objects in the repository; and check to see whether a given retrieval key is
in the repository. Objects, when added, are given an associated “copy action” that determines
how (or whether) the object is copied when imported into another repository.

This sample code shows how the user data repositories can be used to store and manipulate
author-specific information.

String name_key = "name";
String email_key = "email";
String website_key = "website";
String selected = "selected";

// read in information from a file f
for (int i = 0; i < number_of_authors; i++)
{

Vertex v = (Vertex) g.addVertex(new SparseVertex());
v.addUserDatum(name_key, getNextName(f), UserData.SHARED);
v.addUserDatum(email_key, getNextEmail(f), UserData.SHARED);
v.addUserDatum(website_key, getNextWebsite(f), UserData.SHARED);

}

.

.
// vertex v has been selected in a visualization: mark it
v.addUserDatum(selected, selected, UserData.REMOVE);
// get name for v
String v_name = v.getUserDatum(name_key);
.
.
// v’s email address has changed: update it
v.setUserDatum(email_key, "smyth@ics.uci.edu", UserData.SHARED);
// v has been deselected; remove this mark
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v.removeUserDatum(selected);

Although this example does not show it, the JUNG user data repository can contain any Java
object, including other vertices, edges, or graphs.

When a graph element a is copied (with the copy method), the newly created element b
attempts to copy each of the objects in a’s user data repository to b’s user data repository.
The behavior of each such copy attempt will depend on the type of “copy action” that was
specified when the corresponding user data element was created. JUNG provides three dif-
ferent copy action types: UserData.CLONE, UserData.REMOVE, and UserData.SHARED; each
of these implements the method onCopy, which defines the behavior of a user data element
when it is asked to provide a copy of itself.

UserData.CLONE’s version of onCopy returns a copy of the user datum, as defined by the Java
clone method; importUserData then places this copy in the target graph element’s user data
repository. This clone is completely independent of the original. (If the user datum does not
support the clone method, onCopy will throw the Java CloneNotSupportedException.)

UserData.SHARED’s version of onCopy returns a reference to the original user datum; importUserData
then places this reference in the target graph element’s user data repository. Thus, any changes
to this user datum that are made by one of the graph elements that share this user datum
will be reflected in all such graph elements.

UserData.REMOVE’s version of onCopy returns null; that is, user data that is created with this
copy action will not be copied by the copy method.

5.3. Decorators, Indexers, and Labellers

JUNG includes a number of interfaces and classes (in the graph.decorators subpackage)
that provide structured mechanisms for attaching data to JUNG elements. These are used
in some of JUNG’s analytic algorithms (which may need to store or recover values, such as
weights, for vertices or edges) and some of the visualization mechanisms; they can also be
utilized by user code. A few examples follow.

The Indexer class contains methods that create a mapping between the vertices of a graph
and the integers {0, 1, . . . , n−1} (where n is the number of vertices in the graph). It provides
mechanisms to get the index of a given vertex (getIndex(v)) and to get the vertex with a
specified index (getVertex(i)). Among other things, Indexer thus makes it convenient to
arrange a set of vertices in an array, using each vertex’s index as an index into the array.

VertexStringer is an interface that provides a method signature for retrieving the String
label of a specified vertex. The PluggableRenderer class uses several different interfaces like
this to access information on how each individual vertex and edge should be drawn.

The StringLabeller class implements VertexStringer, and is similar to Indexer; it pro-
vides facilities for fetching vertices given strings (labels) and vice versa. However, the labels
are user-defined and thus need not follow any particular pattern. Vertices that have not been
labelled simply will not be accessible by the indexer.

NumberEdgeValue is an interface that specifies method signatures for setting and getting a
number associated with an edge. Since it is an interface rather than a class, the user may
store this information in whatever fashion is most convenient (the JUNG user data repository,
a special Edge implementation’s fields, a user-created and -maintained mapping, etc.).
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6. Filtering

The JUNG filtering mechanism removes selected vertices and/or edges from input graphs, and
returns new graphs. For example, Figure 8 shows a subgraph g of the CiteSeer co-authorship
network which was created by filtering out all vertices of distance <= 2 from a specified
vertex; Figures 9 and 10 show the creation of a subgraph of g, where all vertices with degree
less than 4 were removed.

These new graphs are copies of the original, containing all the same vertices and edges
except for those that have been removed. A Filter takes in a Graph and returns an
UnassembledGraph, which contains the individual vertices and edges that passed the Filter.
Since there may be edges for which both endpoints did not pass the filter, an UnassembledGraph
must be assembled into a new graph, which checks each edge to make sure that its endpoints
are present before copying it into the new graph.

The assembly process can be slow, so it is sometimes desirable to string together several filters
in a row, and not assemble the result until the last Filter has been run. This is done by
creating a filter that implements the EfficientFilter interface. An EfficientFilter is a
type of Filter that can filter an UnassembledGraph, and return another UnassembledGraph.
A filter which examines structural properties of graphs is probably not appropriate to imple-
ment as an EfficientFilter, because UnassembledGraphs may contain incorrect topology
information (in particular, as noted above, the edge set may include some ill-formed edges).
It is the responsibility of the user to determine whether a given filtering mechanism can be
implemented as an EfficientFilter.

While a user can write a custom filter merely by implementing the interface, it is often
easiest to extend one of the two provided base Filter classes, VertexAcceptFilter and
EdgeAcceptFilter. Each of these requires the user to implement a single method (acceptVertex
or acceptEdge, respectively). By default, these are not declared to be EfficientFilters;
however, users may certainly create extensions of these filters that are EfficientFilters.

The SerialFilter mechanism applies a series of filters sequentially to a specified graph, in
the order in which they were added to the SerialFilter. As the filters are applied, it checks
to see whether each one is an EfficientFilter, and calls assemble only when necessary.

The LevelFilter interface was designed to be used in conjunction with the GraphDraw mech-
anism (described in Section 9). LevelFilters are filters that take an integer parameter, which
is used to determine the operation of the filter (for instance, filtering all edges with weight
less than the value of this parameter). With a LevelFilter, a slider on a visualization can be
tied directly into the Filter, and thus can allow the user to control this parameter directly,
and generate a dynamically changing graph.

A user can create a Filter based on an existing Predicate, using the EdgePredicateFilter
and VertexPredicateFilter classes provided; in this case, the edges/vertices that pass the
filter are precisely those that pass the predicate. This can simplify the design of specialized
filters.

7. Event Handling

Some applications generate extra processes (called “threads” in Java) so as to handle several
different tasks concurrently; this generally includes any programs that provide a graphic user
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interface (GUI). If a graph can change over time, or in response to user input, this may result
in synchronization problems (in which one thread is modifying the graph at the same time
that another is trying to read it). To address this issue, JUNG provides a way for one thread
to “listen” for changes to a graph (which may have been made by another thread).

The general pattern is that a object can register itself as a listener to certain types of events;
this causes the object to be added to a list of such listeners, which are notified (via a call to
a standardized method that the listener object must provide) when the event occurs.

Currently, JUNG can register classes (using the ArchetypeGraph.addListener method) to
listen for graph mutation events: vertex addition and removal, and edge addition and removal.
Mechanisms to allow classes to listen for changes to the user data repositories have been
developed, and are planned for future release.

8. Algorithms

JUNG provides several different categories of network algorithms. A selection of them is
listed here.

8.1. Ranking

Ranking algorithms assign values to each vertex (or edge) according to a set of criteria that
reflect structural properties of the network. These criteria are generally intended to measure
the “influence”, “authority”, or “centrality” of a given vertex/edge.

Several of these algorithms interpret their input as a Markov network: a directed weighted
graph in which the vertices represent states, the edges represent possible state transitions,
and the edge weights represent transition probabilities. (A directed graph with non-negative
weights can be converted into a Markov network by normalizing the weights on the outgoing
edges from each vertex to sum to 1.)

Ranking algorithms that JUNG provides include BetweennessCentrality (Brandes (2001)),
which labels each vertex and edge in a graph with a value that is derived from the number of
shortest paths that pass through it; PageRank (Page, Brin, Motwani, and Winograd (1998);
Brin and Page (1998)), which ranks each vertex in a modified Markov network according to
its stationary probability; PageRankWithPriors (White and Smyth (2003)), a generalization
of PageRank whose ranks are calculated relative to a specified set of root vertices; HITS
(Kleinberg (1999)), which ranks each vertex in a graph according to the“hubs-and-authorities”
importance measures; KStepMarkov (White and Smyth (2003)), which ranks each vertex
according to a fast approximation of the PageRankWithPriors algorithm; and VoltageRanker
(Wu and Huberman (2004)), which treats the network as an electrical circuit (with specified
voltage sources and sinks) and assigns each vertex a value corresponding to its residual voltage
in this circuit. Figure 4 shows a visualization of a network whose vertices have been ranked
by VoltageRanker.

8.2. Clustering and Blockmodelling

A cluster is a collection of objects that are all similar to each other in some way. In a network,
similarity is often based on topological properties such as connectivity, but can also be based
on the properties of vertices or edges in the network. Clustering algorithms provided by JUNG
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Figure 4: A random graph generated using the preferential attachment model (Barabasi and
Albert (1999)). The vertices’ sizes reflect the ranks generated by VoltageRanker; higher-
ranked vertices are larger. Voltage source and sink vertices are colored dark blue, and all
other vertices are colored red.
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Figure 5: Clusters of a subgraph of the CiteSeer co-authorship graph, generated by
VoltageClusterer. Each color represents a distinct cluster.

include EdgeBetweennessClusterer (Girvan and Newman (2002)), which computes clusters
for a graph based on the betweenness property of the edges; WeakComponentClusterer, which
finds all weak components in a given graph, where a weak component is defined as a (max-
imal) subgraph in which each pair of vertices is connected by at least one undirected path;
and VoltageClusterer (Wu and Huberman (2004)), which assigns vertices to clusters based
on their tendency to have similar voltages in the network, treated as an electrical circuit
(see VoltageRanker, above). Figure 5 shows a subgraph of CiteSeer whose vertices have
been clustered by VoltageClusterer, defined by the vertices within distance 2 of author
“P Smyth.”

In the field of social network analysis, two vertices are said to be structurally equivalent if
they are each adjacent to the same set of vertices. JUNG provides blockmodelling algorithms
(Wasserman and Faust (1994)) which identify sets of structurally equivalent vertices. These
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algorithms can be useful for detecting possibly duplicate entities (for example, if a data set
contains two or more copies of a single person, possibly with slightly differently spelled names),
and for simplifying visualizations (structurally equivalent vertices may be represented visually
as a single “supervertex”, which can reduce the visual complexity and thus make the overall
network easier to interpret). Figure 6 shows an example of such a simplified visualization.

8.3. Topology, Paths, and Flows

These algorithms perform operations on (and calculate properties of) graphs that relate to
the graph’s topology (that is, the structures and substructures formed by the ways that the
vertices are linked together by edges). Topological algorithms that JUNG provides include
BFSDistanceLabeler, which labels each vertex in a graph with the length of the shortest
unweighted path from a specified vertex in that graph; KNeighborhoodExtractor, which
returns the subgraph of a graph whose vertices are separated by no more than k edges from a
specified vertex; EdmondsKarpMaxFlow (Edmonds and Karp (1972)), which labels each edge
in a directed, edge-weighted graph with the flow along that edge which is consistent with the
maximum flow for the graph; and DijkstraShortestPath (Dijkstra (1959)), which calculates
the length of the shortest (weighted) paths from a specified vertex to other vertices in the
same network.

8.4. Randomly Generated Networks and Statistics

There are a number of ways to characterize networks in terms of a specific topological property;
some of these can be framed in terms of a generative probabilistic model, which can be used to
guide the creation of a random graph. JUNG provides several such random graph generators,
including BarabasiAlbertGenerator (Barabasi and Albert (1999)), which successively adds
vertices to a graph using the preferential attachment model; EppsteinPowerLawGenerator
(Eppstein and Wang (2002)), which creates a graph whose degree distribution follows the
power law; and KleinbergSmallWorldGenerator (Kleinberg (2000)), which creates a graph
which has the small-world property.

JUNG also includes several classes that calculate various statistical measures on graphs. These
measures include degree distributions, clustering coefficients (the extent to which vertices’
neighbors are connected to one another), and measures of discrete distribution similarity such
as Kullback-Leibler divergence.

8.5. Transformations

It is sometimes necessary to convert a graph of one type to another; this can arise in a few
different circumstances.

• Certain algorithms operate only on directed (or undirected) graphs. The
DirectionTransformer class can transform any Graph into either an DirectedGraph
or an UndirectedGraph; edges in the original graph are replaced with analogues of
themselves that have the appropriate direction.

• One may wish to create a graph which is structurally distinct from the original, but
preserves some of the information from the original; for example, one may wish to
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Figure 6: A network for which structurally equivalent vertices have been visually combined
into vertical blocks, whose height represents the number of vertices in a block.
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transform the CiteSeer two-mode researcher-paper bipartite graph (in which some ver-
tices represent researchers, other vertices represent papers, and edges represent author-
ship) to a single-mode co-authorship graph (in which vertices represent researchers, and
edges represent co-authorship relationships). The KPartiteFolder class can transform
a KPartiteGraph into a unipartite Graph whose vertices are copies of those from a spec-
ified partition of the original graph, and whose edges represent “mediated” relationships
in the original graph (that is, if the edges (a,b) and (b,c) exist in the original, then
(a,c) exists in the transformed graph; multiple instances of such relationships can be
represented in the transformed graph either by parallel edges or by decorations on a
single edge).

• The process that resulted in the creation of a graph may not have identified all the
details of the graph type; for example, a graph may be a k-partite graph in terms of its
connectivity, but not have been created as an implementation of KPartiteGraph. The
KPartiteSparseGraph class can construct a KPartiteSparseGraph that is a copy of
an existing Graph, given an appropriate set of partition specifications that are known
to apply to the graph. (That is, the original graph is not modified structurally; this
construction only works if the original graph is actually k-partite.)

9. Visualization

JUNG provides mechanisms for laying out and rendering graphs. The current renderer im-
plementations use the Java Swing API to display graphs, but they may be implemented using
other toolkits (such as SWT).

In general, a visualization requires one of each of the following:

• A Layout, which takes a graph and determines the location at which each of its vertices
will be drawn.

• A (Swing) Component, which provides a “drawing area” upon which the data is ren-
dered. JUNG provides a VisualizationViewer class for this purpose, which is an
extension of the Swing JPanel class. A currently available experimental version of
VisualizationViewer allows the user to create a “window” on the graph visualization,
which can be used to magnify (zoom in on) portions of the graph, and to select different
areas for magnification (panning).

• A Renderer, which takes the data provided by the Layout and paints the vertices and
edges into the provided Component.

JUNG provides the GraphDraw class, which provides a framework for the interaction of these
components by packaging the VisualizationViewer, the Renderer, and the Layout together.
The default implementation fetches the location of each vertex from the Layout, paints each
one with the Renderer inside the Swing Component, and paints each edge as a straight line
between its vertices. Users may customize this behavior as desired; JUNG includes utilities
and support classes that facilitate such customization. For instance, FadingVertexLayout
provides a mechanism that can be used to create fading effects when vertices are filtered out
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and subsequently restored; this can be useful for highlighting ongoing changes, such as may
occur during the temporal evolution of a social network.

The PluggableRenderer class is an implementation of Renderer that provides a number
of ways for the user to customize the way in which the graph is rendered, including the
vertex shape, size, color, and label, and the edge color, thickness, and label; each of these
properties can be specified for each individual vertex or edge. Some of these mechanisms are
demonstrated in Figure 7.

Since JUNG’s data structures are completely separate from its visualization mechanisms,
it is also possible to use other (Java or Java-compatible) visualization libraries to generate
visualizations. One such library is prefuse (Heer, Card, and Landay (2005)); JUNG provides
basic support for converting its data structures into their prefuse equivalents. (A Java applet
on JUNG’s website demonstrates this capability.)

10. Input and Output

Graphs may be built programmatically using the techniques described in Section 4. However,
in many cases, network analysts will have text files, or databases, which contain the data to
be analyzed; in addition, analysts may wish to create a permanent record of a network that
they have generated or modified. To these ends, JUNG supports several input and output
formats, and provides general mechanisms that allow users to create their own formats.

10.1. Text Files

Pajek (Batagelj and Mrvar (2004)) is a tool that is popular in the social network analysis
community, which has its own (complex) file format. JUNG can currently interpret the
portions of the Pajek format that define directed, undirected, and mixed-type graphs; string
(text) labels for vertices; and numeric edge weights. The format can also represent time-series
and labeled vertex partition information, but JUNG does not as yet interpret these parts of
the format.

GraphML (Brandes et al. (2004)) is an XML-based file format whose purpose is to provide a
common file-based representation of network relationships. JUNG can currently interpret the
portions of this format that define directed, undirected, and mixed-type graphs, and simple
vertex and edge decorations. JUNG does not currently interpret the hypergraph and nested
graph portions of the format.

Data is often provided in text files that are not in a common format. In such cases, developers
have two choices: convert the text files into a common format, or write a parser for the existing
format. Because there are many different possible text data formats, JUNG cannot provide a
parser that works for all text data formats; however, the jung.io package does provide a few
examples of parsers for non-canonical formats (BipartiteGraphReader, MatrixFile), which
developers can use as models.

10.2. Databases

Network data may sometimes be stored in a database; this facilitates certain kinds of “flat”
statistical analysis and retrieval, but is not conducive to most methods for network analy-
sis. JUNG provides two different experimental demonstration mechanisms for manipulating
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Figure 7: A demonstration, using PluggableRenderer, of several different mechanisms for
customizing a visualization.
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network data which is stored in a database.

The first mechanism provides methods for reading the graph from the database into main
memory, and for writing the graph (or portions of it) back to the database for long-term
storage, if it has been changed; the program then manipulates this copy of the network, rather
than addressing the database. This requires minimal effort on the part of the developer, but
does mean that the graph has to fit in main memory; networks of several hundred thousand
vertices have required approximately a gigabyte of memory (O’Madadhain et al. (2005)).

The second mechanism retains the network in the database; in this case, JUNG creates a
collection of graph, vertex, and edge objects that refer directly to the database. This is the
only practical method if the network is too large to fit in main memory, but operations are
generally expected to be slower than those on a network which is loaded into memory. (In
principle, caching and intelligent preloading could be used to reduce the fetching overhead,
if only part of the network is being analyzed.) This mechanism requires database-specific
implementations of the graph, vertex, and edge types, so that they know how to connect to
the database to retrieve their metadata, as necessary.

11. Case Studies

In this section, we explore two scenarios in which JUNG has been used:

• the design of an agent-based simulation of a social network; this is based on a discussion
with the developers of Repast (Repast Organization for Architecture and Development
(ROAD) (2004)) on the best use of JUNG for this purpose.

• Netsight (Boey, O’Madadhain, and Smyth (2004)), a JUNG-based application for ex-
ploratory data analysis on network data sets.

11.1. Agent Simulations and Multimodal Graphs

Repast (Recursive Porous Agent Simulation) is a toolkit for creating agent-based models. In
Fall 2004, the Repast developers asked the JUNG developers for guidance on how JUNG
could be used to bolster Repast’s support for using social networks within such models. This
discussion below is adapted from the dialog on JUNG’s web-based open discussion forum
(O’Madadhain and Howe (2004)).

Repast agents may have one or more roles, and may participate in one or more types of
interactions with other agents. Users of Repast may want to get information on just one of
these modes, or on all modes. Since Repast is used to run agent simulations, the mechanisms
which support such queries need to be fast. JUNG can represent such networks in several
different ways; the best solution would depend on the size and complexity of the graph, and
the operations to be used. Some possible representations include:

1. One single-modal graph, where modes are implicitly represented by decorations on ver-
tices and edges (thus, an edge might have decorations on it that indicated that this edge
represented a friendship, a supervisory relationship, and a collaborative relationship, in
different contexts). This would be the most space-efficient, but would require extra time
for mode-specific queries.
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2. One multi-modal graph, where each vertex would represent a single mode of a given
entity, and each edge a single mode of a relationship. This is less space-efficient, but
can be more time-efficient for mode-specific queries. To minimize confusion, it might be
useful to define equivalence classes that would identify the different vertices for a given
entity, for example as all pertaining to that entity.

3. Multiple single-modal graphs. This is the least space-efficient–especially if there are
multiple combinations of entities and relationships, each of which gets its own graph–
but is probably the most time-efficient for mode-specific operations, although possibly
less efficient than the first option for operations that operate on all modes.

JUNG can support each of these models; in addition, it can convert a single multi-modal
graph into multiple single-modal graphs using filters. The built-in vertex and edge constraint
mechanisms, and the predicate utilities, would also be useful for keeping track of the different
modes. Another approach (currently under development) would be to write versions of Vertex
and Edge that would filter their adjacency sets according to a specified predicate. This would
allow users to do “on-the-fly” filtering without creating new graphs, thus saving space at the
expense of time.

For a more specific example of such a network, consider a situation where the actors (agents)
consist of banks, employees and customers, and in which actors’ relationships are of the fol-
lowing types: patronage (customers patronize banks), employment, and friendship (employees
may be friends with customers). As before, the best representation depends on the details,
which in this case revolve around questions of uniqueness and separability.

If we assume that customers may patronize more than one bank, and that employees may
work for more than one bank, and that no individuals are both customers and employees, then
JUNG’s k-partite graph implementation (KPartiteSparseGraph) would be appropriate: the
entity types would define the graph partitions, and each relationship would connect entities
from two distinct partitions.

If, on the other hand, we assume that there is a one-to-one relationship between customers
and banks, and between employees and banks, then the relationships could be represented
implicitly by giving customers and employees a “bank” field, and attaching lists of customers
and employees to each bank.

If employee/employee or customer/customer relationships are of interest, then the relation-
ships no longer define a k-partite graph (since edges in a k-partite graph only connect entities
of different partitions, i.e., types). In this case, one would use a slight modification of the
KPartiteSparseGraph class which had a different set of edge constraints.

Finally, if a single individual can be both a customer and an employee, then individuals may
either be represented by multiple vertices (one vertex for each role, which may be problematic
unless the roles are not expected to influence one another), or by a single vertex, with tags
to indicate each of its roles.

11.2. Netsight

Netsight (Boey et al. (2004)) is a relatively simple visualization and analysis tool for large
network data sets that has been developed at the University of California, Irvine, using the
JUNG framework described in this paper.
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Figure 8: A portion of the CiteSeer co-authorship network, as visualized using Netsight. The
currently selected vertex is colored blue, and highlighted in the vertex selector.

The tool was developed in the context of a project at the University of California, Irvine
funded by the National Science Foundation which involved the development of algorithms for
large relational data sets, such as CiteSeer (White and Smyth (2003), Steyvers, Smyth, Rosen-
Zvi, and Griffiths (2004), Rosen-Zvi, Griffiths, Steyvers, and Smyth (2004)). In developing
data analysis algorithms for such a data set it is quite useful to be able to visualize (e.g.,
via graph layout algorithms) relationships among authors. However, since the entire graph
is so large, an effective method is needed for visualizing the local structure of different parts
of this large graph. Thus, a tool was needed that could load the graph into main memory,
allow a user to interactively select a subgraph of interest, and then produce a layout of that
subgraph.

Standard network visualization tools such as Pajek and UCINET do not offer such an inter-
active filtering capability. Thus, the Netsight tool was developed specifically for this purpose.
Netsight uses several different aspects of the JUNG libraries to facilitate exploratory data
analysis on large networks. Some of its key features include:

• decoupling of display and analysis: Netsight provides the user a way to browse
and select vertices (by label e.g., name), filter the graph, and run analyses without
visualizing the network; this can be crucial to the analysis of large networks.

• filtering: Netsight uses the JUNG filtering mechanisms to allow the network analyst
to select a subgraph (or derived graph) to be analyzed and/or visualized. The available
filters include degree filters (which remove vertices whose degrees do not lie in a specified
range) and neighborhood filters (which remove vertices that are not within a specified
distance from a specified vertex or set of vertices). The user may create composite filters
which consist of a series of filters to be applied in sequence.

• multiple graph navigation: Netsight allows the analyst to load several networks, and
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Figure 9: Netsight’s filtering interface.

to create subgraphs of any loaded or derived network (subject to the restriction imposed
by the amount of available memory). The analyst navigates among these networks using
a tree-based interface (where a network is listed as a “child” of the network from which
it was derived, if any).

• algorithms: Netsight provides interfaces to several of JUNG’s algorithms for social
network analysis, including ranking algorithms such as PageRank. It has also been used
to provide a visual interface to the output of a link formation model (O’Madadhain
et al. (2005)).

12. Related Work

JUNG was created out of a perceived need for a general, flexible, and powerful API for
manipulating, analyzing, and visualizing graphs and networks. There exist numerous other
packages and tools for visualizing and manipulating networks; we present here a comparison of
JUNG with the following: UCINET (Borgatti, Everett, and Freeman (2004)), Pajek (Batagelj
and Mrvar (2004)), R (R Development Core Team (2004)) with sna (Butts (2004)), and
GFC (IBM Corporation (1999)). Other similar software (which we will not discuss in detail
for reasons of space) includes NetMiner (Cyram Company, Ltd. (2004)), StOCNET (Boer,
Huisman, Snijders, and Zeggelink (2003)), MultiNet (Richards and Seary (2004)), InfoVis
(Fekete (2004)), InfoVis Cyberinfrastructure (Penumarthy, Mane, and Börner (2004)), Visone
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Figure 10: The result of applying the filter from Figure 9 to the graph in Figure 8.

(Brandes and Wagner (2003)), Boost (Siek, Lee, and Lumsdaine (2001)), JGraph (Alder
(2005)), and yFiles (yWorks (2004)).

UCINET and Pajek are stand-alone applications that each provide a number of tools for
visualizing and analyzing networks. However, they cannot be conveniently addressed pro-
grammatically by other applications, so they are not well-suited to process large numbers of
graphs. Furthermore, they are applications rather than libraries, so users cannot write their
own routines; this is particularly problematic for complex data sets (whose complexities may
not have been anticipated by the application’s designers) and for analysts that wish to use
methods that are not provided as part of the application. Finally, they are closed-source
projects, and executables are only available for the Windows environment.

R is a specialized programming language designed primarily for statistical computing and
graphics. The sna package extends R in somewhat the same way that JUNG extends Java;
like JUNG, sna provides a number of routines for social network analysis and visualization
(including some 3-D visualization). R is well-suited for the rapid development of scripts and
(in conjunction with sna) for on-the-fly network analysis, especially for analysis which requires
sophisticated statistical tools. In addition, while it is not technically platform-independent,
R is available on several popular platforms (so code written in R is reasonably portable), and
is open-source. However, R and sna do have some limitations, particularly for large sparse
networks:

• R passes copies of a routine’s arguments to it; this requires considerably more space
and time than passing references to these arguments (as Java does), especially for large



Journal of Statistical Software 31

objects.

• R does not have a native sparse matrix format (although a sparse matrix package
(Koenker and Ng (2003)) does exist, sna does not make use of it), which can greatly
increase the space and time required.

These limitations can be addressed by implementing some of the critical portions of the code
in C/C++, but at the cost of additional complexity of code and reduced portability. As
a result, R and sna are generally not the most efficient way of manipulating or analyzing
networks of more than a few thousand entities. By contrast, while Java is not as well-suited
to rapid script development as R, it does provide a convenient platform for the development
of more complex tools (for example, those with graphic user interfaces, database connectivity,
and/or Web support), and since JUNG’s representations and algorithms are both space- and
time-efficient, Java and JUNG are more natively scaleable.

GFC is a Java graph drawing-oriented API. It can only use Java’s AWT/Swing mechanisms
for rendering, contains few algorithms for network analysis, is no longer actively supported,
and is not open-source. (In this, it is similar to a number of other network APIs.)

13. Future Directions

JUNG currently provides many of the tools and elements that are most commonly required
for writing software that manipulates, analyzes, and visualizes network data sets. Future
releases are planned to include the following features, several of which are currently under
development. These features should significantly expand the set of available tools and enhance
users’ abilities to write robust code.

• Expansion of the input and output options, including full implementation of database
connectivity (as discussed in Section 10.2), ability to parse more complex Pajek and
GraphML files, and support for other network file formats, such as the .dl and DOT
formats defined by the UCINET and Graphviz (Ellson and North (2004)) projects.

• Providing additional analysis tools: algorithms, statistical tests, parameter estimations,
etc.

• Support for on-the-fly filtering (mentioned in Section 11.1); this could make working
with subgraphs much less memory-intensive.

• New visualization architecture: the current visualization system flexibly supports a
broad set of visualizations, but is limited in certain respects (such as its ability to
accommodate dynamic and evolving graphs, or to save and restore visual states). Con-
tinuing work on JUNG is investigating ways to adapt or replace the current system.

• Creating a standard XML-based representation of JUNG’s algorithms which specify
their parameter and return types, as well as brief textual descriptions. This would allow
writers of applications such as Netsight to expand the algorithms which it provides by
editing a configuration file, rather than modifying the code itself.



32 Analysis and Visualization of Network Data using JUNG

14. Acknowledgements

We would like to thank the Open Source Technology Group (2005) for their hosting of this
project on SourceForge, and the Eclipse Foundation (2005) for providing the Java Eclipse
IDE; these free services and tools allowed us to concentrate on development rather than
infrastructure.

This material is based upon work that was supported in part by the National Science Foun-
dation under the Knowledge Discovery and Dissemination (KD-D) Program under Grant
No. IIS-0083489 (authors JO, PS, and YB), by the NSF under Grant Nos. IIS-0133749,
IIS-0205724 and IIS-0326105 (author DF), by a GAANN fellowship (author JO), and by an
NSDEG fellowship (author SW).

References

Adar E, Feinberg D (2005). “GUESS: Graph Exploration System.” http://www.hpl.hp.
com/research/idl/projects/graphs/.

Alder G (2005). “JGraph: The Java Graph Visualization Library.” http://www.jgraph.com.

Apache Jakarta Project (2004). “Commons Collections.” http://jakarta.apache.org/
commons/collections/.

Apache XML Project (2004). “Xerces2 Java Parser.” http://xml.apache.org/xerces2-j/
index.html.

Barabasi AL, Albert R (1999). “Emergence of scaling in random networks.” Science, 286,
509–512.

Batagelj V, Mrvar A (2004). “Pajek: Program for Large Network Analysis.” http://vlado.
fmf.uni-lj.si/pub/networks/pajek/.

Battista GD, Eades P, Tamassia R, Tollis IG (1999). Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall.

Boer P, Huisman M, Snijders TAB, Zeggelink EP (2003). “StOCNET: an open software
system for the advanced statistical analysis of social networks.” http://stat.gamma.rug.
nl/stocnet. Version 1.4. Gronigen: ProGAMMA / ICS.

Boey YB, O’Madadhain J, Smyth P (2004). “Netsight.” http://jung.sourceforge.net/
netsight.

Borgatti S, Everett M, Freeman L (2004). “UCINET: Software for Social Network Analysis.”
http://www.analytictech.com/ucinet.

Brandes U (2001). “A Faster Algorithm for Betweenness Centrality.” Journal of Mathematical
Sociology, 25(2), 163–177.

Brandes U, Eiglsperger M, Kaufmann M, Lerner J (2004). “The GraphML File Format.”
http://graphml.graphdrawing.org/.

http://www.hpl.hp.com/research/idl/projects/graphs/
http://www.hpl.hp.com/research/idl/projects/graphs/
http://www.jgraph.com
http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/collections/
http://xml.apache.org/xerces2-j/index.html
http://xml.apache.org/xerces2-j/index.html
 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://stat.gamma.rug.nl/stocnet
http://stat.gamma.rug.nl/stocnet
 http://jung.sourceforge.net/netsight
 http://jung.sourceforge.net/netsight
 http://www.analytictech.com/ucinet
 http://graphml.graphdrawing.org/


Journal of Statistical Software 33

Brandes U, Wagner D (2003). “visone - Analysis and Visualization of Social Networks.” In
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